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Introduction

The use of collateral is of increasing importance for the
functioning of the global financial system. In volume terms,
collateral use has become over the past decade on par with
monetary aggregates like M2 (Singh 2011, Singh and Stella,
2012).
More precisely, rehypothecation gives the receiver of collateral
the right to reuse it and pledge it in another transaction. This
practice is good for the receiver as she can increase her liquidity
by putting the collateral at use, instead of keeping it aside.
Rehypothecation has thus clear beneficial effects in terms of
increasing liquidity in financial markets.



Introduction

At the same time rehypothecation may increase systemic risk as
several lenders are counting on the same underlying collateral
as backup in case things go wrong (Singh 2012).
This implies that balance sheets of financial institutions become
more interlocked because of rehypothecation, which then
becomes yet another channel of distress propagation.
The recent literature on rehypothecation (e.g. Bottazzi et al.,
2012, Andolfatto et al., 2015, Monnet and Narajabad 2012,
Maurin 2014, Singh, 2012) does not consider the role for the
network structure for liquidity creation and distress propagation.
In this work we investigate

1 under which conditions the network of secured loans across
agents generates additional liquidity in the market

2 Which network structures generate larger liquidity losses following
small local shocks.



Outline

1 A model of rehypothecation networks

2 Collateral multiplier and network structure with fixed hoarding
coefficients

3 Collateral multiplier and liquidity hoarding cascades under VaR.



A sneak preview of the main results

Not every network architecture generates endogenous collateral.
Network cycles are necessary for that
The size of the collateral multiplier is affected by features like the
direction of collateral flows, cycles’ length, network density.
Emergence of trade-off between liquidity and systemic risk.
Core-periphery graphs generate high collateral multiplier with a
much lower density than random graphs. At the same time they
also generate larger reduction in collateral flows following
shocks.



A model of rehypothecation networks

We consider a set of N financial institutions (“banks” henceforth)
Banks invest into external assets and they lend each other on
the interbank market.
We assume that all debt contracts in this economy are repo
contracts, they are thus secured by collateral.
To collect funds via repo contracts each bank i (1 ≤ i ≤ N) can
pledge its proprietary collateral or re-pledge the collateral
obtained via reverse-repos.



A model of rehypothecation networks
Main variables

ACout

i : the total amount of collateral flowing out of the box of the bank i
(i.e. the total amount of collateral that the bank i use to obtain for loans
from other banks).
ACrm

i : the total amount of (re-pledgeable) collateral remaining inside the
box of the bank i .
AC

i : the total amount of (re-pledgeable) collateral flowing into the box
of the bank i . AC

i includes proprietary as well as non-proprietary assets
“receiving” from other banks. Note that by definition AC

i = ACout

i + ACrm

i .
A0

i : the value of the proprietary collateral of the bank i .
θi : the fraction of non-hoarded (i.e. outgoing) collateral of bank i .
Bi : borrowers’ set of bank i, i.e. the banks that obtained funding from i
via repos and thus provided collateral to i . Bi is the in-neighborhood of i .
Li : lenders’ set of bank i, i.e. the banks that obtained collateral from i
and thus provided funding to i . Li is the out-neighborhood of i .



A model of rehypothecation networks
Main variables

δi : for every bank i , let kout
i be its outgoing degree in the

rehypothecation network, then δi is defined as1{
δi = 1, if kout

i > 0
δi = 0, if kout

i = 0

Note that, kout
i = 0⇔ Li = ∅.

ai←j : each ai←j captures the direction of collateral flow from the
bank i to the bank j . For every pair of banks i and j we define{

ai←j = 1, if bank j gives collateral to bank i
ai←j = 0, otherwise

si←j : is the share of j ’s outgoing collateral flowing into i .



The determination of total collateral

We can write the following expression for the dynamics of ACout

i ,
i.e. the total amount collateral flowing out of the box of the
bank i

ACout

i = A0out

i + (1− h)δiθi
∑
j∈Bi

si←jACout

j (1)

Similarly, the total amount of re-pledgeable collateral remaining
inside the box of the bank i is

ACrm

i = A0rm

i + (1− h)(1− δiθi)
∑
j∈Bi

si←jACout

j (2)

Finally, we can write the following expression for the dynamics of
AC

i , the total re-pledgeable collateral flowing into the box of
each bank i

AC
i = ACout

i + ACrm

i = A0
i + (1− h)

∑
j∈Bi

si←jACout

j (3)



The determination of total collateral

The shares si←j obey some constraints. If Lj 6= ∅ (i.e. kout
j > 0),

the total outgoing collateral (pledged or re-pledged ) by bank j is
equal to ∑

i∈Lj

si←jACout

j = ACout

j

The above implies∑
i∈Lj

si←j = 1, ∀j = 1,2, ...N (4)

Furthermore, if we assume that weights are homogeneous
across lenders of j , then the elements of the matrix
S = {si←j}NxN read assi←j =

ai←j

kout
j
, if kout

j > 0

si←j = 0, otherwise
(5)



The determination of total collateral

We shall mainly focus on the outflowing collateral ACout
, as it

represents the contribution of each bank to the overall funding
liquidity of the system.
In matrix form Equation (1) reads

ACout
= A0out

+ (1− h)MACout
(6)

The solution to the above equation returns the vector of
outflowing collateral ACout

.

ACout
= (I − (1− h)M)−1A0out

= B1A0out
(7)

with I is the identity matrix of size N, B1 = (I − (1− h)M)−1,
and the elements mi←j of the matrixM are defined asmi←j = δiθisi←j =

δiθi ai←j

kout
j

, if kout
j > 0

mi←j = 0, if kout
j = 0



Network Structure and Total Collateral

We now turn to investigate how the rehypothecation network
(captured by the matrixM) affects the total collateral in the
system.

We shall focus on how the network affects two main variables
the aggregate amount of outgoing collateral, Sout =

∑i=N
i=1 ACout

i
The multiplier of the amount of outgoing collateral,m, defined as

m =

∑i=N
i=1 ACout

i∑i=N
i=1 A0out

i

=

∑i=N
i=1 δiθiAC

i∑i=N
i=1 δiθiA0

i

(8)

We are in particular interested in identifying network structures
that generate endogenous collateral, i.e. such that m > 1



Network Structure and Total Collateral
The role of the cycles

Not every network structure generates endogenous collateral.
For this to be true, the network must contain closed cycles.

Star chain Open chain Closed chain
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Network Structure and Total Collateral
Direction of collateral and length of cycles

Example 1. Same number of edges, different lengths of cycles,
but same total amounts of outgoing collateral.
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Example 2. Same number of edges, different lengths of cycles;
but total amounts of outgoing collateral increases with cycles’
length.
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Network structure and total collateral
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Figure: Collateral multiplier (m) as a function of density under closed
k-regular graph Simulation is implemented with N=50, k=N-1, h=0.1,
1− θ = 0.1, and A0 = 100 for all banks.



Network structure and total collateral
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Figure: Collateral multiplier (m) as a function of density under random graph
(a) and core-periphery graph (b). Simulation is implemented with N=50,
h=0.1, 1− θ = 0.1, and A0 = 100 for all banks.

In the limit of density→ 1 all the three structures generate the
same multiplier m∗ = 1

1−(1−h)θ



Value-at-Risk and collateral hoarding effects

So far we have worked under the assumption that the shares on
non hoarded collateral {θi}Ni=1 were homogeneous.
We now remove this hypothesis and assume that banks that
determine decide how much collateral to hoard on the basis of a
Value at Risk criterion (VaR).
This allows us to study cascades of hoarding following local
shocks hitting fraction of nodes in different network structures,
and more in general to study how the level of total collateral
changes when the fraction of hoarded and non-hoarded
collateral are heterogeneous across banks.



Value-at-Risk and collateral hoarding

For every bank j let NLj be its net liquidity position. Bank j has
collateral AC

j that can be used to get external funds with a haircut
h.
At the same time a fraction of this collateral θj is already pledged.
The net liquidity position of the bank is thus:

NLj = (1− h)(1− θj)AC
j (θ1, θ2, ..., θN ,G)− εj (9)

where εj are payments within the periods, which are assumed to
be a i.i.d. random variable (see also Gai, Haldane and Kapadia,
2011).
The notation AC

j (θ1, θ2, ..., θN ,G) emphasizes the fact that the
total collateral position of a bank depends - in general - on the
fraction of hoarded collateral of all banks in the network G.
In particular, the more borrowers of j hoard collateral, the lower
is the value of collateral AC

j , and thus the higher the need to
hoard collateral for j .



Value-at-Risk and collateral hoarding

Let us consider a realization of the liquidity shock that is
sufficiently high to imply the default of bank j

εj > (1− h)(1− θj)AC
j

It follows that default is an event occurring with probability

prob.(NLj ≤ 0) = prob.(εj > (1− h)(1− θj)AC
j )

We assume that each bank j employs a Value-at-Risk (VaR)
strategy to determine the fraction of collateral to hoard so that
the above probability of default is not higher than a target 1− cj .

prob.(εj > (1− h)(1− θ∗j )AC
j ) ≤ 1− cj (10)

If we further assume that returns on assets held by j grow with
asset size then each bank j will set its target θj = θ∗j so that

prob.(εj > (1− h)(1− θ∗j )AC
j ) = 1− cj (11)



Value-at-Risk and collateral hoarding

From the last equation it follows that θj depends on not only the
uncertainty about εj (captured by the assumption about the
distribution of εj but also on the haircut rate h as well as the value
of the collateral AC

j .
The interdependence between θj and AC

j implies that each bank
will adjust its fraction of hoarded collateral depending on
hoarding fraction set by other banks.
If we assume that the shocks εj are either uniformly or normally
distributed, the expression for the determination of the target θ∗j
becomes

θ∗j = 1−
c0

j

(1− h)AC
j
, (12)

Under the above distributional assumptions about εj the system
determining the vector of collateral AC and the vector of θ∗j has a
unique solution.



Collateral hoarding cascades

We now study total collateral loss when - starting from a situation
of homogeneous θj , a fraction of nodes experience a rise in
uncertainty, captured by the parameter c0

j in Eq. 12.

We study collateral loss under

1 random and target attack

2 different network densities and different network architectures
(k-regular, random graph, core-periphery)



Collateral creation and collateral hoarding cascades in
different networks
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(a) random attacks at 〈c̃0
i 〉 = 1.5
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(b) target attacks 〈c̃0
i 〉 = 1.5

Figure: Collateral creation and collateral variation under local uncertainty shocks. In
each panel, the left y-axis shows Sout

S0 (before shocks) and the right y-axis shows
variation in Sout (after shocks) at 〈c̃0

i 〉 = 1.5. Different network structures are
represented by different colors: for k-regular graphs in black, for random graphs in
green, and for core-periphery graphs in magenta.



Conclusions

We study how the structure of the network affects the level of
total collateral in presence of rehypothecation.
Closed chains (cycles) are necessary to generate endogenous
collateral (i.e. a level of collateral higher than total proprietary
collateral). Furthermore, the direction of collateral flows, network
density and the length of cycles matter as well!
Core-periphery networks generate larger multipliers with a much
lower density than in other network structures (random graphs).
At the same time they also also generate larger collateral losses
in case of shocks.
Take home message: to achieve both high liquidity and financial
robustness the distribution of collateral flows should be as
homogeneous as possible.



Network Structure and Total Collateral
Star chain Open chain Closed chain
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In the case of the star chain in the figure example (a)), B2
receives collaterals from B1 and B3 and no further pledge is
made. We get

AC
1 = (1− θ1)A0

1,
AC

2 = A0
2 + (1− h)(θ1A0

1 + θ3A0
3)

AC
3 = (1− θ3)A0

3.

It is easy to verify that∑3
i=1 AC

i =
∑3

i=1 A0
i − h(θ1A0

1 + θ3A0
3) ≤

∑3
i=1 A0

i .

We obtain the same result for the open chain represented in
case (b).



Network Structure and Total Collateral

We now consider the third case where banks form a cycle (i.e.
the closed chain in example (c)).
If all banks take into account additional collaterals that they can
receive from other banks (borrowers), then endogenous
collateral is created (m>1)
Denote AC,t

i the total collateral available for each bank i
(including its proprietary as well as the re-pledged ones) after t
rounds of re-using collaterals.



Network Structure and Total Collateral

{AC,t
i }

3
i can be jointly determined by solving the following system of

equations AC,t+1
1

AC,t+1
2

AC,t+1
3

 = W

AC,t
1

AC,t
2

AC,t
3

+

A0
1

A0
2

A0
3

 (13)

where W =

 0 0 (1− h)θ3
(1− h)θ1 0 0

0 (1− h)θ2 0

.

Recursively we obtain the following dynamicsAC,t
1

AC,t
2

AC,t
3

 = [I + W 1 + W 2 + ...+ W t ]

A0
1

A0
2

A0
3

 . (14)

Clearly, the endogenous creation of collateral in the system after t

steps is given by [W 1 + W 2 + .....W t ]

A0
1

A0
2

A0
3

.


